125 research outputs found

    Differentiating nociceptive mechanisms using electrocutaneous detection thresholds

    Get PDF
    Chronic pain after surgery is a frequent problem and difficult to treat. Persisting and chronic pain can be the result of the malfunctioning of nociceptive mechanisms; both ascending and descending pathways can, individually, attribute to chronic pain development. However, existing methodology does not discriminate between ascending and descending mechanisms. Here, we present psychophysical methods which could help improve the understanding of nociceptive malfunction in persistent post-surgical pain

    Computational modeling of Adelta-fiber-mediated nociceptive detection of electrocutaneous stimulation

    Get PDF
    Sensitization is an example of malfunctioning of the nociceptive pathway in either the peripheral or central nervous system. Using quantitative sensory testing, one can only infer sensitization, but not determine the defective subsystem. The states of the subsystems may be characterized using computational modeling together with experimental data. Here, we develop a neurophysiologically plausible model replicating experimental observations from a psychophysical human subject study. We study the effects of single temporal stimulus parameters on detection thresholds corresponding to a 0.5 detection probability. To model peripheral activation and central processing, we adapt a stochastic drift-diffusion model and a probabilistic hazard model to our experimental setting without reaction times. We retain six lumped parameters in both models characterizing peripheral and central mechanisms. Both models have similar psychophysical functions, but the hazard model is computationally more efficient. The model-based effects of temporal stimulus parameters on detection thresholds are consistent with those from human subject data

    A cross-sectional study in healthy elderly subjects aimed at development of an algorithm to increase identification of Alzheimer pathology for the purpose of clinical trial participation

    Get PDF
    In the current study, we aimed to develop an algorithm based on biomarkers obtained through nonor minimally invasive procedures to identify healthy elderly subjects who have an increased risk of abnormal cerebrospinal fluid (CSF) amyloid beta42 (Aβ) levels consistent with the presence of Alzheimer’s disease (AD) pathology. The use of the algorithm may help to identify subjects with preclinical AD who are eligible for potential participation in trials with disease modifying compounds being developed for AD. Due to this pre-selection, fewer lumbar punctures will be needed, decreasing overall burden for study subjects and costs.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care

    Nociceptive detection probability depends on the temporal properties of electrocutaneous stimuli

    Get PDF
    Electrical stimulation of the skin using a needle-electrode specifically activates nociceptive nerve fibres. The detection of such stimuli by subjects depends on the activation of subsequent nociceptive mechanisms. Activation of these mechanisms depends on the temporal stimulus properties, such as the pulse-width, number of pulses, and inter-pulse interval. Here, we study whether different temporal stimulus properties do not only affect the detection threshold, but also the slope of the psychophysical curve. 30 healthy human subjects were included in a 10-minute psychophysical experiment. The results showed that the psychophysical function, and thus the detection probability, depends on stimulus properties. This suggests that additional estimation of the psychophysical curve could be useful for improved observation of (several) nociceptive mechanisms

    Using machine learning techniques to characterize sleep-deprived driving behavior

    Get PDF
    OBJECTIVESleep deprivation is known to affect driving behavior and may lead to serious car accidents similar to the effects from e.g., alcohol. In a previous study, we have demonstrated that the use of machine learning techniques allows adequate characterization of abnormal driving behavior after alprazolam and/or alcohol intake. In the present study, we extend this approach to sleep deprivation and test the model for characterization of new interventions. We aimed to classify abnormal driving behavior after sleep deprivation, and, by using a machine learning model, we tested if this model could also pick up abnormal driving behavior resulting from other interventions.METHODSData were collected during a previous study, in which 24 subjects were tested after being sleep-deprived and after a well-rested night. Features were calculated from several driving parameters, such as the lateral position, speed of the car, and steering speed. In the present study, we used a gradient boosting model to classify sleep deprivation. The model was validated using a 5-fold cross validation technique. Next, probability scores were used to identify the overlap of driving behavior after sleep deprivation and driving behavior affected by other interventions. In the current study alprazolam, alcohol, and placebo are used to test/validate the approach.RESULTSThe sleep deprivation model detected abnormal driving behavior in the simulator with an accuracy of 77 ± 9%. Abnormal driving behavior after alprazolam, and to a lesser extent also after alcohol intake, showed remarkably similar characteristics to sleep deprivation. The average probability score for alprazolam and alcohol measurements was 0.79, for alcohol 0.63, and for placebo only 0.27 and 0.30, matching the expected relative drowsiness.CONCLUSION​​​​​​​We developed a model detecting abnormal driving induced by sleep deprivation. The model shows the similarities in driving characteristics between sleep deprivation and other interventions, i.e., alcohol and alprazolam. Consequently, our model for sleep deprivation may serve as a next reference point for a driving test battery of newly developed drugs.Pharmacolog

    Development and technical validation of a smartphone-based cry detection algorithm

    Get PDF
    Introduction: The duration and frequency of crying of an infant can be indicative of its health. Manual tracking and labeling of crying is laborious, subjective, and sometimes inaccurate. The aim of this study was to develop and technically validate a smartphone-based algorithm able to automatically detect crying.Methods: For the development of the algorithm a training dataset containing 897 5-s clips of crying infants and 1,263 clips of non-crying infants and common domestic sounds was assembled from various online sources. OpenSMILE software was used to extract 1,591 audio features per audio clip. A random forest classifying algorithm was fitted to identify crying from non-crying in each audio clip. For the validation of the algorithm, an independent dataset consisting of real-life recordings of 15 infants was used. A 29-min audio clip was analyzed repeatedly and under differing circumstances to determine the intra- and inter- device repeatability and robustness of the algorithm.Results: The algorithm obtained an accuracy of 94% in the training dataset and 99% in the validation dataset. The sensitivity in the validation dataset was 83%, with a specificity of 99% and a positive- and negative predictive value of 75 and 100%, respectively. Reliability of the algorithm appeared to be robust within- and across devices, and the performance was robust to distance from the sound source and barriers between the sound source and the microphone.Conclusion: The algorithm was accurate in detecting cry duration and was robust to various changes in ambient settings.Perioperative Medicine: Efficacy, Safety and Outcome (Anesthesiology/Intensive Care

    E-retailing ethics in Egypt and its effect on customer repurchase intention

    Get PDF
    The theoretical understanding of online shopping behaviour has received much attention. Less focus has been given to the formation of the ethical issues that result from online shopper interactions with e-retailers. The vast majority of earlier research on this area is conceptual in nature and limited in scope by focusing on consumers’ privacy issues. Therefore, the purpose of this paper is to propose a theoretical model explaining what factors contribute to online retailing ethics and its effect on customer repurchase intention. The data were analysed using variance-based structural equation modelling, employing partial least squares regression. Findings indicate that the five factors of the online retailing ethics (security, privacy, non- deception, fulfilment/reliability, and corporate social responsibility) are strongly predictive of online consumers’ repurchase intention. The results offer important implications for e-retailers and are likely to stimulate further research in the area of e-ethics from the consumers’ perspective

    The Physics of the B Factories

    Get PDF
    This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C

    The Physics of the B Factories

    Get PDF
    corecore